Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;134(18):3339-48.
doi: 10.1242/dev.02881.

Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube

Affiliations

Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube

Lisa M Galli et al. Development. 2007 Sep.

Abstract

A long-term goal of developmental biology is to understand how morphogens establish gradients that promote proper tissue patterning. A number of reports describe the formation of the Wg (Wnt1) gradient in Drosophila and have shown that Porcupine, a predicted membrane-bound O-acyl transferase, is required for the correct distribution of Wg protein. The discovery that Wnts are palmitoylated on a conserved cysteine residue suggests that porcupine activity and Wnt palmitoylation are important for the generation of Wnt gradients. To establish the role of porcupine in Wnt gradient formation in vertebrates, we tested the role of porcupine/Wnt palmitoylation in human embryonic kidney 293T cells and in the chick neural tube. Our results lead us to conclude that: (1) vertebrate Wnt1 and Wnt3a possess at least one additional site for porcupine-mediated lipid-modification; (2) porcupine-mediated lipid-modification of Wnt proteins promotes their activity in 293T cells and in the chick neural tube; and (3) porcupine-mediated lipid-modification reduces the range of activity of Wnt1 and Wnt3a in the chick neural tube. These findings highlight the importance of porcupine-mediated lipid modifications in the formation of vertebrate Wnt activity gradients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources