Pressurized liquid extraction as a novel sample pre-treatment for trace element leaching from biological material

Anal Chim Acta. 2006 Jul 21;572(2):172-9. doi: 10.1016/j.aca.2006.05.053. Epub 2006 May 26.

Abstract

Pressurized liquid extraction (PLE), commonly used for organic compounds extraction, has been applied for trace element leaching from marine biological material in order to determine major and trace elements (Al, As, Cd, Co, Cu, Fe, Hg, Li, Mn, Pb, Se, Sr, V and Zn). The released elements by formic acid PLE have been evaluated by inductively coupled plasma-optical emission spectrometry (ICP-OES). Different variables, such as formic acid concentration, extraction temperature, static time, extraction steps, pressure, mean particle size and diatomaceous earth (DE) mass/sample mass ratio were simultaneously studied by applying an experimental design approach (Plackett-Burman design (PBD) and central composite design (CCD)). Results showed that the extraction temperature was statistically significant (confidence interval of 95%) for most of the elements (high metal releasing was achieved at high temperatures). In addition, formic acid concentration was also statistically significant (confidence interval of 95%) for metals such as Cd and Cu. Most of the metals can be extracted using the same PLE operating conditions (formic acid concentration of 1.0 M, extraction temperature at 125 degrees C, static time of 5 min, one extraction step, extraction pressure at 500 psi and DE mass/sample mass ratio of 2). Taking in mind PLE requirements at the optimised operating conditions (125 degrees C), a time of 6 min is needed to pre-heat the cell. Therefore, the PLE assisted multi-element leaching is completed after 12 min. Analytical performances, such as limits of detection and quantification, repeatability of the over-all procedure and accuracy, by analysing GBW-08571, DORM-2, DOLT-3 and TORT-2 certified reference materials, were finally assessed.