Characterization of orphan human cytochromes P450

Drug Metab Rev. 2007;39(2-3):627-37. doi: 10.1080/03602530701467708.


Of the 57 human cytochromes P450 (P450) and 58 pseudogenes discovered to date, ( ), 1/4 still remain "orphans" in the sense that their function, expression sites, and regulation are still largely not elucidated. The post-human genome-sequencing project era has presented the research community with novel challenges. Despite many insights gathered about gene location and genetic variations in our human genome, we still lack important knowledge about these novel P450 enzymes and their functions in endogenous and exogenous metabolism, as well as their possible roles in the metabolism of toxicants and carcinogens. Our own list of such orphans currently consists of 13 members: P450 2A7, 2S1, 2U1, 2W1, 3A43, 4A22, 4F11, 4F22, 4V2, 4X1, 4Z1, 20A1, and 27C1. Some of the orphans, e.g. P450s 2W1 and 2U1, already have putative assigned functions in arachidonic acid metabolism and may activate carcinogens. However, at this point, for the majority of them more knowledge is available about their genes and single nucleotide polymorphisms than of their biological functions. It is noteworthy that most P450 orphans express high interspecies sequence conservation and have orthologs in rodents (e.g. CYP4X1/Cyp4x1, CYP4V2/Cyp4v3). This review summarizes recent knowledge about the P450 orphans and questions remaining about their specific roles in human metabolism.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cytochrome P-450 Enzyme System / classification
  • Cytochrome P-450 Enzyme System / genetics*
  • Humans
  • Pharmaceutical Preparations / metabolism
  • Pseudogenes / genetics
  • RNA, Messenger / biosynthesis
  • RNA, Messenger / genetics
  • Toxicology


  • Pharmaceutical Preparations
  • RNA, Messenger
  • Cytochrome P-450 Enzyme System