Acidic groups docked to well defined wetted pockets at the core of the binding interface: a tale of scoring and missing protein interactions in CAPRI

Proteins. 2007 Dec 1;69(4):786-92. doi: 10.1002/prot.21722.

Abstract

Some challenging targets in CAPRI (T24/25 and T26) involve binding solvent accessible acidic residues at the core of the binding interface, where they are always found immersed in crystal waters. In fact, Asp and Glu residues are more likely to form part of the hydrogen bond network of their surrounding crystal water molecules than to form a buried salt bridge. Interestingly, many of the crystal waters mediating the intermolecular interactions of the acidic groups are already present in the unbound structure, reinforcing the notion that some water molecules behave as an extension of the protein structure. This is in contrast to acidic groups found in the periphery of the binding interface that form ubiquitous salt bridges that cement the high affinity complex, while at the same time they are exposed to rapidly exchanging water molecules. Because of this, dichotomy implicit solvent scoring functions fail to properly rank these complexes by prioritizing salt bridges rather than water mediated contacts. A detailed analysis of Target 24, for which our group predicted two out of the four successful homology model complex structures, and Target 26 reveal how crystal waters shape the binding cavities of acidic groups prior to binding, in agreement with the theory of anchor residues as mediators of protein recognition.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Computational Biology / methods*
  • Computer Simulation*
  • Crystallization
  • Databases, Protein
  • Heme / chemistry
  • Models, Molecular
  • Molecular Conformation
  • Protein Binding
  • Protein Conformation
  • Protein Interaction Mapping*
  • Proteins / chemistry*
  • Proteomics / methods*
  • Software
  • Solvents
  • Water / chemistry

Substances

  • Proteins
  • Solvents
  • Water
  • Heme