Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus

Neuroscience. 2007 Oct 12;149(1):131-43. doi: 10.1016/j.neuroscience.2007.07.029. Epub 2007 Jul 25.


Hippocampal sclerosis is the most frequent pathology encountered in mesial temporal structures resected from patients with intractable temporal lobe epilepsy and it mainly involves hippocampal neuronal loss and gliosis. These alterations are accompanied by changes in the expression of a variety of molecules in the surviving neurons, as well as axonal reorganization in both excitatory and inhibitory circuits. The alteration of a subpopulation of GABAergic interneurons that expresses the calcium binding protein parvalbumin (PV) is thought to be a key factor in the epileptogenic process. We investigated the distribution and density of parvalbumin-immunoreactive (PV-ir) neurons in surgically resected hippocampal tissue from epileptic patients with and without sclerosis. Using quantitative stereological methods, we show for the first time that there is no correlation between total neuronal loss and PV-ir neuronal loss in any of the hippocampal fields. We also observed higher values of the total neuronal density in the sclerotic subiculum, which is accompanied by a lower density of PV-ir when compared with non-sclerotic epileptic and autopsy hippocampi. These findings suggest that, the apparently normal subiculum from sclerotic patients also shows unexpected changes in the density and proportion of PV-ir neurons.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Cell Count / methods
  • Epilepsy / metabolism
  • Epilepsy / pathology*
  • Female
  • Hippocampus / metabolism*
  • Humans
  • Male
  • Middle Aged
  • Parvalbumins / metabolism*
  • Stereotaxic Techniques


  • Parvalbumins