Nanoparticles emerged as promising tool in drug targeting, since, after appropriate modification, they are able to deliver their payload to specific sites, like tissues, cells, or even certain cellular organelles. In this context, the delivery of nanoparticles from the circulation into the target cells represents a crucial step. Here, model drug delivery systems such as quantum dots are ideal candidates to elucidate this process in more detail, since they provide outstanding features like a small and uniform size, unique optical properties for most sensitive detection and modifiable surfaces. Recent progress in the surface chemistry of quantum dots expanded their use in biological applications, reduced their cytotoxicity and rendered quantum dots a powerful tool for the investigation of distinct cellular processes, like uptake, receptor trafficking and intracellular delivery. In this review, we will not only describe the ideal attributes of QDs for biological applications and imaging but also their distinct specific and non-specific pathways into the cells as well as their intracellular fate.