Supramolecular organization of the respiratory chain in Neurospora crassa mitochondria
- PMID: 17873079
- PMCID: PMC2168242
- DOI: 10.1128/EC.00149-07
Supramolecular organization of the respiratory chain in Neurospora crassa mitochondria
Abstract
The existence of specific respiratory supercomplexes in mitochondria of most organisms has gained much momentum. However, its functional significance is still poorly understood. The availability of many deletion mutants in complex I (NADH:ubiquinone oxidoreductase) of Neurospora crassa, distinctly affected in the assembly process, offers unique opportunities to analyze the biogenesis of respiratory supercomplexes. Herein, we describe the role of complex I in assembly of respiratory complexes and supercomplexes as suggested by blue and colorless native polyacrylamide gel electrophoresis and mass spectrometry analyses of mildly solubilized mitochondria from the wild type and eight deletion mutants. As an important refinement of the fungal respirasome model, we found that the standard respiratory chain of N. crassa comprises putative complex I dimers in addition to I-III-IV and III-IV supercomplexes. Three Neurospora mutants able to assemble a complete complex I, lacking only the disrupted subunit, have respiratory supercomplexes, in particular I-III-IV supercomplexes and complex I dimers, like the wild-type strain. Furthermore, we were able to detect the I-III-IV supercomplexes in the nuo51 mutant with no overall enzymatic activity, representing the first example of inactive respirasomes. In addition, III-IV supercomplexes were also present in strains lacking an assembled complex I, namely, in four membrane arm subunit mutants as well as in the peripheral arm nuo30.4 mutant. In membrane arm mutants, high-molecular-mass species of the 30.4-kDa peripheral arm subunit comigrating with III-IV supercomplexes and/or the prohibitin complex were detected. The data presented herein suggest that the biogenesis of complex I is linked with its assembly into supercomplexes.
Figures
Similar articles
-
Effects of mitochondrial complex III disruption in the respiratory chain of Neurospora crassa.Mol Microbiol. 2009 Apr;72(1):246-58. doi: 10.1111/j.1365-2958.2009.06643.x. Epub 2009 Feb 23. Mol Microbiol. 2009. PMID: 19239619
-
Respiratory active mitochondrial supercomplexes.Mol Cell. 2008 Nov 21;32(4):529-39. doi: 10.1016/j.molcel.2008.10.021. Mol Cell. 2008. PMID: 19026783
-
OXPHOS Supercomplexes: respiration and life-span control in the aging model Podospora anserina.Ann N Y Acad Sci. 2006 May;1067:106-15. doi: 10.1196/annals.1354.013. Ann N Y Acad Sci. 2006. PMID: 16803975
-
Respiratory chain supercomplexes in the plant mitochondrial membrane.Trends Plant Sci. 2006 May;11(5):232-40. doi: 10.1016/j.tplants.2006.03.007. Epub 2006 Apr 17. Trends Plant Sci. 2006. PMID: 16616870 Review.
-
Structural organization of the mitochondrial respiratory chain.Ital J Biochem. 2003 Mar;52(1):58-61. Ital J Biochem. 2003. PMID: 12833641 Review.
Cited by
-
Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of Ogataea parapolymorpha.Appl Environ Microbiol. 2020 Jul 20;86(15):e00678-20. doi: 10.1128/AEM.00678-20. Print 2020 Jul 20. Appl Environ Microbiol. 2020. PMID: 32471916 Free PMC article.
-
Stay Fit, Stay Young: Mitochondria in Movement: The Role of Exercise in the New Mitochondrial Paradigm.Oxid Med Cell Longev. 2019 Jun 19;2019:7058350. doi: 10.1155/2019/7058350. eCollection 2019. Oxid Med Cell Longev. 2019. PMID: 31320983 Free PMC article. Review.
-
Functional asymmetry and electron flow in the bovine respirasome.Elife. 2016 Nov 10;5:e21290. doi: 10.7554/eLife.21290. Elife. 2016. PMID: 27830641 Free PMC article.
-
Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart.Arch Biochem Biophys. 2009 Oct 1;490(1):30-5. doi: 10.1016/j.abb.2009.08.002. Epub 2009 Aug 11. Arch Biochem Biophys. 2009. PMID: 19679098 Free PMC article.
-
Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role.J Mol Med (Berl). 2021 Jan;99(1):57-73. doi: 10.1007/s00109-020-02004-8. Epub 2020 Nov 17. J Mol Med (Berl). 2021. PMID: 33201259 Free PMC article. Review.
References
-
- Antonicka, H., I. Ogilvie, T. Taivassalo, R. P. Anitori, R. G. Haller, J. Vissing, N. G. Kennaway, and E. A. Shoubridge. 2003. Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J. Biol. Chem. 278:43081-43088. - PubMed
-
- Artal-Sanz, M., W. Y. Tsang, E. M. Willems, L. A. Grivell, B. D. Lemire, H. van der Spek, and L. G. Nijtmans. 2003. The mitochondrial prohibitin complex is essential for embryonic viability and germline function in Caenorhabditis elegans. J. Biol. Chem. 278:32091-32099. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
