Signal-3L: A 3-layer approach for predicting signal peptides

Biochem Biophys Res Commun. 2007 Nov 16;363(2):297-303. doi: 10.1016/j.bbrc.2007.08.140. Epub 2007 Aug 31.


Functioning as an "address tag" that directs nascent proteins to their proper cellular and extracellular locations, signal peptides have become a crucial tool in finding new drugs or reprogramming cells for gene therapy. To effectively and timely use such a tool, however, the first important thing is to develop an automated method for rapidly and accurately identifying the signal peptide for a given nascent protein. With the avalanche of new protein sequences generated in the post-genomic era, the challenge has become even more urgent and critical. In this paper, we have developed a novel method for predicting signal peptide sequences and their cleavage sites in human, plant, animal, eukaryotic, Gram-positive, and Gram-negative protein sequences, respectively. The new predictor is called Signal-3L that consists of three prediction engines working, respectively, for the following three progressively deepening layers: (1) identifying a query protein as secretory or non-secretory by an ensemble classifier formed by fusing many individual OET-KNN (optimized evidence-theoretic K nearest neighbor) classifiers operated in various dimensions of PseAA (pseudo amino acid) composition spaces; (2) selecting a set of candidates for the possible signal peptide cleavage sites of a query secretory protein by a subsite-coupled discrimination algorithm; (3) determining the final cleavage site by fusing the global sequence alignment outcome for each of the aforementioned candidates through a voting system. Signal-3L is featured by high success prediction rates with short computational time, and hence is particularly useful for the analysis of large-scale datasets. Signal-3L is freely available as a web-server at or, where, to further support the demand of the related areas, the signal peptides identified by Signal-3L for all the protein entries in Swiss-Prot databank that do not have signal peptide annotations or are annotated with uncertain terms but are classified by Signal-3L as secretory proteins are provided in a downloadable file. The large-scale file is prepared with Microsoft Excel and named "Tab-Signal-3L.xls", and will be updated once a year to include new protein entries and reflect the continuous development of Signal-3L.

MeSH terms

  • Algorithms*
  • Amino Acid Sequence
  • Amino Acids / chemistry*
  • Databases, Protein*
  • Information Storage and Retrieval / methods
  • Molecular Sequence Data
  • Protein Sorting Signals*
  • Sequence Analysis, Protein / methods*
  • Software*


  • Amino Acids
  • Protein Sorting Signals