Neutrophil infiltration in exercise-injured skeletal muscle: how do we resolve the controversy?

Sports Med. 2007;37(10):837-56. doi: 10.2165/00007256-200737100-00002.


Neutrophils have not consistently been detected in exercise-injured skeletal muscle and, therefore, neutrophil infiltration in this muscle has become a controversial issue. Thirty-eight animal and human studies that assessed injured muscle for neutrophils and employed acute exercise (e.g. level, uphill or downhill running, eccentric contractions, or swimming) were analysed to help clarify the relationship between neutrophil infiltration and exercise-induced muscle injury. Findings from nearly three-quarters of the reviewed studies suggest that neutrophil accumulation follows exercise-induced muscle injury. Intramuscular neutrophil infiltration was present in 85% and 55% of the animal and human studies, respectively. However, no consistent relationship between the potential damaging effect of the exercise type and neutrophil infiltration can be conclusively established from these studies. Specific animal-related factors that could influence these results include age, animal strain, catecholamines, corticosterone, acute stressors and muscle type, whereas a specific human-related influencing factor is physical activity status. Factors affecting both animal and human studies could include sex hormones, muscle sampling techniques and neutrophil detection approaches. General categories of methods that have been used to detect neutrophil infiltration are microscopy, myeloperoxidase (MPO) biochemical assay, antibody staining and white blood cell radionuclide imaging. Only studies employing white blood cell radionuclide imaging have consistently detected neutrophil infiltration. However, antibody staining with a quantitative analysis is currently the most feasible, valid and sensitive method. Research recommendations, therefore, are warranted to resolve the neutrophil infiltration controversy. We propose two approaches for animal studies. The first approach encompasses (i) studying or measuring factors that could influence neutrophil infiltration; (ii) using quantitative antibody staining analysis (in all studies and employing a panel of anti-neutrophil antibodies); (iii) examining the relationship between fibre morphological changes and neutrophil antigen expression; and (iv) developing a neutrophil antibody-radionuclide imaging technique. The second approach will yield animal findings complementing or addressing the gaps from the human exercise studies. For human studies, we suggest that (i) physical activity status is investigated; (ii) quantitative antibody staining analysis is performed (including staining injured muscle with a panel of antibodies such as anti-elastase, anti-MPO, anti-CD11b and anti-CD15 or assessing injured muscle using both immunohistochemistry and the MPO biochemical assay); and (iii) the relationship between fibre morphological changes and neutrophil antigen expression is examined. Studies that incorporate these recommendations could lead to an increased understanding of whether neutrophils are essential for the recovery from an exercise-induced muscle injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Exercise / physiology*
  • Humans
  • Muscle, Skeletal / immunology*
  • Muscle, Skeletal / injuries
  • Neutrophil Infiltration*
  • Neutrophils / physiology