Image quality, lesion detection, and diagnostic efficacy in digital mammography: full-field digital mammography versus computed radiography-based mammography using digital storage phosphor plates

Eur J Radiol. 2008 Sep;67(3):487-96. doi: 10.1016/j.ejrad.2007.08.016. Epub 2007 Sep 24.

Abstract

Objective: To compare image quality, the lesion detection, and the diagnostic efficacy of full-field digital mammography (FFDM) and computed radiography-based mammography using digital storage phosphor plates (DSPM) in the evaluation of breast lesions.

Materials and methods: In this prospective study, 150 patients with suspicious breast lesions underwent FFDM and DSPM. Nine aspects of image quality (brightness, contrast, sharpness, noise, artifacts, and the detection of anatomic structures, i.e., skin, retromamillary space, glandular tissue, and calcifications) were evaluated by five radiologists. In addition, the detection of breast lesions and the diagnostic efficacy, based on the BI-RADS classification, were evaluated with histologic and follow-up correlation.

Results: For contrast, sharpness, and the detection of all anatomic structures, FFDM was rated significantly better (p<0.05). Mass lesions were equally detected, whereas FFDM detected more lesions consisting of calcifications (85 versus 75). DSPM yielded two false-negative results. Both lesions were rated BI-RADS 4 with FFDM, but BI-RADS 2 with DSPM. Both were invasive carcinoma at histology. The sensitivity, specificity, PPV, NPV, and accuracy of FFDM were 1.0, 0.397, 0.636, 1.0, and 0.707, compared to 0.974, 0.397, 0.630, 0.935, and 0.693 of DSPM.

Conclusion: Based on image quality parameters, FFDM is, in part, significantly better than DSPM. Furthermore, the detection of breast lesions with calcifications is favorable with FFDM. However, the diagnostic efficacy of FFDM and DSPM was equal. The interpretation of the false-negative results suggests that the perception and characterization of breast lesions is not defined solely by the digital mammography system but is strongly influenced by the radiologist, who is one of the determinants in the interpretation of breast imaging.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Breast Neoplasms / diagnostic imaging*
  • Female
  • Humans
  • Mammography / instrumentation*
  • Mammography / methods*
  • Middle Aged
  • Radiographic Image Enhancement / instrumentation
  • Radiographic Image Enhancement / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • X-Ray Intensifying Screens*