Model for estimating the population prevalence of chronic obstructive pulmonary disease: cross sectional data from the Health Survey for England

Popul Health Metr. 2007 Sep 26:5:8. doi: 10.1186/1478-7954-5-8.


Background: Chronic obstructive pulmonary disease (COPD) is a major but neglected public health problem. Currently 1.4% of the England population has a clinical diagnosis of COPD, but the true burden of the disease has not been known with certainty, as many cases remain undiagnosed.

Methods: A mathematical model based on cross sectional data from a representative sample of the population in England (the Heath Survey for England 2001, n = 10,750) was developed allowing estimates on the prevalence of COPD (defined based on the presence of airflow obstruction) to be obtained. Logistic regression analysis was used to investigate and choose risk factors for inclusion in the model and to derive the prevalence estimates based on the strength of association between selected risk factors and the outcome COPD. The model allows the prevalence to be estimated in populations at national level and also at regional and large local areas, based on their compositions according to age, sex, smoking and ethnicity, and on area degrees of urbanisation and deprivation. We applied the model to measure the prevalence of COPD in England and in some sub-groups of the population within the country.

Results: The prevalence of COPD in England is estimated as 3.1% (3.9% in men and 2.4% in women) in the population over 15 years of age, and 5.3% (6.8% in men and 3.9% in women) in 45 year-olds and over. There was a 7-fold variation in the prevalence across subgroups of the population, with lowest values in Asian women from wealthy rural areas (1.7%), and highest in black men from deprived urban areas (12.5%).

Conclusion: The model can be used to estimate population prevalence of COPD from large general practices to national level, and as a tool to identify areas of high levels of unmet needs for COPD priority health actions. The results from the model highlight the importance of including variables other than age, sex and smoking, i.e. levels of deprivation, urbanisation and ethnicity, when estimating population prevalence of COPD. The model should be validated at local level and incorporated into case-finding strategies.