Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis

Comput Biol Chem. 2007 Oct;31(5-6):335-46. doi: 10.1016/j.compbiolchem.2007.07.003. Epub 2007 Aug 15.


It is generally accepted that the translation rate depends on the availability of cognate aa-tRNAs. In this study it is shown that the key factor that determines translation rate is the competition between near-cognate and cognate aa-tRNAs. The transport mechanism in the cytoplasm is diffusion, thus the competition between cognate, near-cognate and non-cognate aa-tRNAs to bind to the ribosome is a stochastic process. Two competition measures are introduced; C(i) and R(i) (i=1, 64) are quotients of the arrival frequencies of near-cognates vs. cognates and non-cognates vs. cognates, respectively. Furthermore, the reaction rates of bound cognates differ from those of bound near-cognates. If a near-cognate aa-tRNA binds to the A site of the ribosome, it may be rejected at the anti-codon recognition step or proofreading step or it may be accepted. Regardless of its fate, the near-cognates and non-cognates have caused delays of varying duration to the observed rate of translation. Rate constants have been measured at a temperature of 20 degrees C by (Gromadski, K.B., Rodnina, M.V., 2004. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191-200). These rate constants have been re-evaluated at 37 degrees C, using experimental data at 24.5 degrees C and 37 degrees C (Varenne, S., et al., 1984. Translation in a non-uniform process: effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol. 180, 549-576). The key results of the study are: (i) the average time (at 37 degrees C) to add an amino acid, as defined by the ith codon, to the nascent peptide chain is: tau(i)=9.06+1.445x[10.48C(i)+0.5R(i)] (in ms); (ii) the misreading frequency is directly proportional to the near-cognate competition, E(i)=0.0009C(i); (iii) the competition from near-cognates, and not the availability of cognate aa-tRNAs, is the most important factor that determines the translation rate - the four codons with highest near-cognate competition (in the case of E. coli) are [GCC]>[CGG]>[AGG]>[GGA], which overlap only partially with the rarest codons: [AGG]<[CCA]<[GCC]<[CAC]; (iv) based on the kinetic rates at 37 degrees C, the average time to insert a cognate amino acid is 9.06ms and the average delay to process a near-cognate aa-tRNA is 10.45ms and (vii) the model also provides estimates of the vacancy times of the A site of the ribosome - an important factor in frameshifting.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Algorithms
  • Codon / genetics
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Kinetics
  • Models, Biological*
  • Peptide Chain Elongation, Translational
  • Protein Biosynthesis*
  • RNA, Transfer, Amino Acid-Specific / metabolism*
  • Ribosomes / metabolism*
  • Temperature


  • Codon
  • RNA, Transfer, Amino Acid-Specific