Effect of surface charge and density of distearylphosphatidylethanolamine-mPEG-2000 (DSPE-mPEG-2000) on the cytotoxicity of liposome-entrapped ricin: effect of lysosomotropic agents

Int J Pharm. 2008 Feb 28;350(1-2):79-94. doi: 10.1016/j.ijpharm.2007.08.032. Epub 2007 Aug 26.

Abstract

Ricin was encapsulated in various liposomes having neutral, negatively and positively charged and different density of DSPE-mPEG-2000 on the surface and cytotoxicity of ricin entrapped in these different charged liposomal formulations was studied in CHO pro(-) cells and compared with free ricin with a view to develop an optimum delivery system for ricin in vivo. It was observed that the cytotoxicity of ricin entrapped in various charged liposomes was significantly dependent on the charge on the surface of liposomes. The maximum cytotoxicity of ricin was observed when it was delivered through negatively charged liposomes. Monensin enhances the cytotoxicity of ricin entrapped in various charged liposomes and the extent of enhancement of the cytotoxicity is significantly dependent on the charge on the surface of liposomes. Maximum potentiation (213.14-fold) of cytotoxicity of ricin was observed when it was delivered through positively charged liposomes followed by negatively charged (83.36-fold) and neutral (71.30-fold) liposomes, respectively. Studies on the kinetics of inhibition of protein synthesis by ricin entrapped in various charged liposomes revealed that lag period of inhibition of protein synthesis is significantly lengthened following delivery through various charged liposomes. However, in the presence of monensin, the lag period was reduced. There is a marginal variation in the cytotoxicity of ricin entrapped in various charged liposomes after incorporation of 5mol% of DSPE-mPEG-2000 on the surface. However, there is a significant variation in the enhancing potency of monensin on the cytotoxicity of ricin entrapped in various charged liposomes in CHO pro(-) cells following incorporation of 5mol% DSPE-mPEG-2000 on the surface. Studies on the effect of variation of density of DSPE-mPEG-2000 on the surface of various charged liposomes on the enhancement of cytotoxicity of entrapped ricin by monensin in CHO pro(-) cells showed that the enhancing potency of monensin on the cytotoxicity of ricin entrapped in various charged liposomes is significantly dependent on the density of DSPE-mPEG-2000 on their surface. It was also observed that the efficacies of monensin on the enhancement of cytotoxicity of ricin entrapped in various charged PEG-liposomes in CHO pro(-) cells was highly related to their amount of cell-association. The present study has clearly shown that by suitable alteration of liposomal lipid composition, charge and density of hydrophilicity it would be possible to direct liposomal ricin to specific cells for their selective elimination in combination with monensin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonium Chloride / pharmacology
  • Animals
  • CHO Cells
  • Cricetinae
  • Cricetulus
  • Exocytosis
  • Liposomes
  • Monensin / pharmacology*
  • Phosphatidylethanolamines / chemistry*
  • Polyethylene Glycols / chemistry*
  • Ricin / administration & dosage*
  • Ricin / metabolism
  • Ricin / toxicity*
  • Surface Properties

Substances

  • 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly(ethylene glycol 2000)
  • Liposomes
  • Phosphatidylethanolamines
  • Ammonium Chloride
  • 1,2-distearoylphosphatidylethanolamine
  • Polyethylene Glycols
  • Ricin
  • Monensin