Caveolae as organizers of pharmacologically relevant signal transduction molecules

Annu Rev Pharmacol Toxicol. 2008;48:359-91. doi: 10.1146/annurev.pharmtox.48.121506.124841.


Caveolae, a subset of membrane (lipid) rafts, are flask-like invaginations of the plasma membrane that contain caveolin proteins, which serve as organizing centers for cellular signal transduction. Caveolins (-1, -2, and -3) have cytoplasmic N and C termini, palmitolylation sites, and a scaffolding domain that facilitates interaction and organization of signaling molecules so as to help provide coordinated and efficient signal transduction. Such signaling components include upstream entities (e.g., G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and steroid hormone receptors) and downstream components (e.g., heterotrimeric and low-molecular-weight G proteins, effector enzymes, and ion channels). Diseases associated with aberrant signaling may result in altered localization or expression of signaling proteins in caveolae. Caveolin-knockout mice have numerous abnormalities, some of which may reflect the impact of total body knockout throughout the life span. This review provides a general overview of caveolins and caveolae, signaling molecules that localize to caveolae, the role of caveolae/caveolin in cardiac and pulmonary pathophysiology, pharmacologic implications of caveolar localization of signaling molecules, and the possibility that caveolae might serve as a therapeutic target.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Caveolae / metabolism*
  • Caveolins / metabolism*
  • Drug Delivery Systems
  • Gene Expression Regulation
  • Heart Diseases / physiopathology
  • Humans
  • Lung Diseases / physiopathology
  • Mice
  • Signal Transduction*


  • Caveolins