Molecular properties determined from the relaxation of long-lived spin states

J Chem Phys. 2007 Oct 7;127(13):134112. doi: 10.1063/1.2778429.

Abstract

The populations of long-lived spin states, in particular, populations of singlet states that are comprised of antisymmetric combinations of product states, |alpha(I)beta(S)> - |beta(I)alpha(S)>, are characterized by very long lifetimes because the dipole-dipole interaction between the two "active" spins I and S that are involved in such states is inoperative as a relaxation mechanism. The relaxation rate constants of long-lived (singlet) states are therefore determined by the chemical shift anisotropy (CSA) of the active spins and by dipole-dipole interactions with passive spins. For a pair of coupled spins, the singlet-state relaxation rate constants strongly depend on the magnitudes and orientations of the CSA tensors. The relaxation properties of long-lived states therefore reveal new information about molecular symmetry and structure and about spectral density functions that characterize the dynamic behavior.