N-cadherin is essential for retinoic acid-mediated cardiomyogenic differentiation in mouse embryonic stem cells

Eur J Histochem. 2007 Jul-Sep;51(3):181-92.

Abstract

Contraction forces developed by cardiomyocytes are transmitted across the plasma membrane through end-to-end connections between the myocytes, called intercalated disks, which enable the coordinated contraction of heart muscle. A component of the intercalated disk, the adherens junction, consists of the cell adhesion molecule, N-cadherin. Embryos lacking N-cadherin die at mid-gestation from cardiovascular abnormalities. We have evaluated the role of N-cadherin in cardiomyogenesis using N-cadherin-null mouse embryonic stem (ES) cells grown as embryoid bodies (EBs) in vitro. Myofibrillogenesis, the spatial orientation of myofibers, and intercellular contacts including desmosomes were normal in N-cadherin-null ES cell-derived cardiomyocytes. The effect of retinoic acid (RA), a stage and dose-dependent cardiogenic factor, was assessed in differentiating ES cells. all-trans (at) RA increased the number of ES cell-derived cardiomyocytes by approximately 3-fold (at 3 x 10(-9) M) in wt EBs. However, this effect was lost in N-cadherin-null EBs. In the presence of supplemented at-RA, the emergence of spontaneously beating cardiomyocytes appeared to be delayed and slightly less efficient in N-cadherin-null compared with wt and heterozygous EBs (frequencies of EBs with beating activity at 5 days: 54+/-18% vs. 96+/-0.5%, and 93+/-7%, respectively; peak frequencies of EBs with beating activity: 83+/-8% vs. 96+/-0.5% and 100%, respectively). In conclusion, cardiomyoyctes differentiating from N-cadherin-null ES cells in vitro show normal myofibrillogenesis and intercellular contacts, but impaired responses to early cardiogenic effects mediated by at-RA. These results suggest that N-cadherin may be essential for RA-induced cardiomyogenesis in mouse ES cells in vitro.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cadherins / genetics
  • Cadherins / physiology*
  • Cell Differentiation
  • Cells, Cultured
  • Embryonic Stem Cells / metabolism
  • Embryonic Stem Cells / physiology*
  • Immunohistochemistry
  • Mice
  • Mice, Knockout
  • Microscopy, Confocal
  • Muscle Fibers, Skeletal / metabolism
  • Muscle Fibers, Skeletal / physiology
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / physiology*
  • Myofibrils / physiology
  • Tretinoin / pharmacology
  • Tretinoin / physiology*

Substances

  • Cadherins
  • Tretinoin