Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 21 (11), 885-900

Agmatine : Metabolic Pathway and Spectrum of Activity in Brain

Affiliations
Review

Agmatine : Metabolic Pathway and Spectrum of Activity in Brain

Angelos Halaris et al. CNS Drugs.

Abstract

Agmatine is an endogenous neuromodulator that, based on animal studies, has the potential for new drug development. As an endogenous aminoguanidine compound (1-amino-4-guanidinobutane), it is structurally unique compared with other monoamines. Agmatine was long thought to be synthesised only in lower life forms, until its biosynthetic pathway (decarboxylation of arginine) was described in the mammalian brain in 1994. Human arginine decarboxylase has been cloned and shown to have 48% identity to ornithine decarboxylase. In neurons of the brain and spinal cord, agmatine is packaged into synaptic vesicles and released upon neuronal depolarisation. Other evidence of a neuromodulation role for agmatine is the presence of a specific cellular uptake mechanism and a specific metabolic enzyme (agmatinase; which forms putrescine).Initially, agmatine was conceptualised as an endogenous clonidine-displacing substance of imidazoline receptors; however, it has now been established to have affinity for several transmembrane receptors, such as alpha(2)-adrenergic, imidazoline I(1) and glutamatergic NMDA receptors. In addition to activity at these receptors, agmatine irreversibly inhibits neuronal nitric oxide synthase and downregulates inducible nitric oxide synthase. Endogenous agmatine is induced in response to stress and/or inflammation. Stressful conditions that induce agmatine include hypoxic-ischaemia and cold-restraint stress of ulcerogenic proportion. Induction of agmatine in the brain seems to occur in astrocytes, although neurons also synthesise agmatine. The effects of injected agmatine in animals include anticonvulsant-, antineurotoxic- and antidepressant-like actions. Intraperitoneal or intracerebroventricular injections of agmatine rapidly elicit antidepressant-like behavioural changes in the rodent forced swim test and tail suspension test. Intraperitoneal injections of agmatine into rats and mice also elicit acute anxiolytic-like behavioural changes in the elevated plus-maze stress test. In an animal model of acute stress disorder, intraperitoneal agmatine injections diminish contextual fear learning. Furthermore, intraperitoneal injections of agmatine reduce alcohol and opioid dependence by diminishing behaviour in a rat conditioned place preference paradigm. Based on these findings, agmatine appears to be an endogenous neuromodulator of mental stress. The possible roles and/or beneficial effects of agmatine in stress-related disorders, such as depression, anxiety and post-traumatic stress disorder, merit further investigation.

Similar articles

See all similar articles

Cited by 41 PubMed Central articles

See all "Cited by" articles

References

    1. Amino Acids. 2004 Jul;26(4):321-9 - PubMed
    1. Epilepsy Res. 2005 Jun;65(1-2):33-40 - PubMed
    1. Pediatr Res. 2002 Oct;52(4):606-11 - PubMed
    1. Curr Opin Clin Nutr Metab Care. 2004 Jan;7(1):45-51 - PubMed
    1. Physiol Behav. 2005 Jun 30;85(3):370-5 - PubMed

MeSH terms

LinkOut - more resources

Feedback