Kink instability of a highly deformable elastic cylinder

Phys Rev Lett. 2007 Aug 17;99(7):076101. doi: 10.1103/PhysRevLett.99.076101. Epub 2007 Aug 15.

Abstract

When a soft elastic cylinder is bent beyond a critical radius of curvature, a sharp fold in the form of a kink appears catastrophically at its compressed side while the tensile side remains smooth. The critical radius increases linearly with the diameter of the cylinder but remains independent of its material properties such as modulus; the maximum deflection at the location of the kink depends on both the material and geometric properties of the cylinder. The catastrophic dynamics of evolution of the kink depicts propagation of a shear wave from the location of the kink towards the edges signifying that kinking is an elastic response of the material which results in extreme localization of curvature. We have rationalized this phenomenon in the light of the classical Euler's buckling instability in slender elastic rods.