pH dependence of stability of the 10th human fibronectin type III domain: a computational study

Biotechnol Prog. 2008 Jan-Feb;24(1):48-55. doi: 10.1021/bp0700915. Epub 2007 Oct 13.


We present detailed computational studies based on electrostatic calculations to evaluate the origins of pKa values and the pH dependence of stability for the 10th type III domain of human fibronectin (FNfn10). One of our goals is to validate the calculation protocols by comparison to experimental data (Koide, A.; Jordan, M. R.; Horner, S.; Batori, V.; Koide, S. Biochemistry 2001, 40, 10326-10333). Another goal is to evaluate the sensitivity of the calculated ionization free energies and apparent pKa values on local structural fluctuations, which do not alter the structural convergence to a particular architecture, by using a complete ensemble of solution NMR structures and the NMR average minimized structure of FNfn10 (Main, A. L.; Harvey, T. S.; Baron, M.; Boyd, J.; Campbell, I. D. Cell 1992, 71, 671-678). Our calculations demonstrate that, at high ionic strength, FNfn10 is more stable at low pH compared to neutral pH, in overall agreement with experimental data. This behavior is attributed to contributions from unfavorable Coulombic interactions in a surface patch for the pairs Asp7-Glu9 and Asp7-Asp23. The unfavorable interactions are decreased at low pH, where the acidic residues become neutral, and are further decreased at high ionic strength because of increased screening by salt ions. Elimination of the unfavorable interactions in the theoretical mutants Asp7Asn (D7N) and Asp7Lys (D7K) produce higher calculated stabilities at neutral pH and any ionic strength compared to the wild-type, in agreement with the experimental data. We also discuss subtleties in the calculated apparent pKa values and ionization free energies, which are not in agreement with the experimental data. This work demonstrates that comparative electrostatic calculations can provide rapid predictions of pH-dependent properties of proteins and can be significant aids in guiding the design of proteins with tailored properties.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computational Biology / methods*
  • Fibronectins / chemistry*
  • Humans
  • Hydrogen-Ion Concentration
  • Models, Molecular
  • Nuclear Magnetic Resonance, Biomolecular
  • Protein Structure, Tertiary*
  • Thermodynamics


  • Fibronectins