The interaction of liver fatty-acid-binding protein (FABP) with anionic phospholipid vesicles: is there extended phospholipid anchorage under these conditions?

Biochem J. 2008 Feb 15;410(1):123-9. doi: 10.1042/BJ20071109.

Abstract

Liver FABP (fatty-acid-binding protein) binds a variety of non-polar anionic ligands including fatty acids, fatty acyl CoAs, lysophospholipids and bile acids. Liver FABP is also able to bind to anionic phospholipid vesicles under conditions of low ionic strength, and membrane binding results in the release of bound ligand. However, the molecular interactions involved in binding to the phospholipid interface and the mechanism of ligand release are not known. Ligand release could be due to a significant conformational change in the protein at the interface or interaction of a phospholipid molecule with the ligand-binding cavity of the protein resulting in ligand displacement. Two portal mutant proteins of liver FABP, L28W and M74W, have now been used to investigate the binding of liver FABP to anionic phospholipid vesicles, monitoring changes in fluorescence and also fluorescence quenching in the presence of brominated lipids. There is a large increase in fluorescence intensity when the L28W mutant protein binds to vesicles prepared from DOPG (dioleoyl-sn-phosphatidylglycerol), but a large decrease in fluorescence intensity when the M74W mutant binds to these vesicles. The Br(4)-phospholipid prepared by bromination of DOPG dramatically quenches both L28W and M74W, consistent with the close proximity of a fatty acyl chain to the tryptophan residues. The binding of liver FABP to DOPG vesicles is accompanied by only a minimal change in the CD spectrum. Overall, the results are consistent with a molecule of anionic phospholipid interacting with the central cavity of the liver FABP, possibly involving the phospholipid molecule in an extended conformation.

MeSH terms

  • Animals
  • Base Sequence
  • DNA Primers
  • Fatty Acid-Binding Proteins / metabolism*
  • Fluorescence
  • Phospholipids / metabolism*
  • Protein Binding
  • Rats

Substances

  • DNA Primers
  • Fatty Acid-Binding Proteins
  • Phospholipids