Effect of methylglyoxal modification on stress-induced aggregation of client proteins and their chaperoning by human alphaA-crystallin

Biochem J. 2008 Feb 1;409(3):771-7. doi: 10.1042/BJ20071006.

Abstract

alpha-Crystallin prevents protein aggregation under various stress conditions through its chaperone-like properties. Previously, we demonstrated that MGO (methylglyoxal) modification of alphaA-crystallin enhances its chaperone function and thus may affect transparency of the lens. During aging of the lens, not only alphaA-crystallin, but its client proteins are also likely to be modified by MGO. We have investigated the role of MGO modification of four model client proteins (insulin, alpha-lactalbumin, alcohol dehydrogenase and gamma-crystallin) in their aggregation and structure and the ability of human alphaA-crystallin to chaperone them. We found that MGO modification (10-1000 microM) decreased the chemical aggregation of insulin and alpha-lactalbumin and thermal aggregation of alcohol dehydrogenase and gamma-crystallin. Surface hydrophobicity in MGO-modified proteins decreased slightly relative to unmodified proteins. HPLC and MS analyses revealed argpyrimidine and hydroimidazolone in MGO-modified client proteins. The degree of chaperoning by alphaA-crystallin towards MGO-modified and unmodified client proteins was similar. Co-modification of client proteins and alphaA-crystallin by MGO completely inhibited stress-induced aggregation of client proteins. Our results indicate that minor modifications of client proteins and alphaA-crystallin by MGO might prevent protein aggregation and thus help maintain transparency of the aging lens.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cattle
  • Humans
  • Insulin / chemistry
  • Insulin / metabolism
  • Molecular Sequence Data
  • Protein Denaturation / drug effects
  • Pyruvaldehyde / pharmacology*
  • Temperature
  • alpha-Crystallin A Chain / genetics
  • alpha-Crystallin A Chain / metabolism*

Substances

  • Insulin
  • alpha-Crystallin A Chain
  • Pyruvaldehyde