Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;3(12):795-804.
doi: 10.1038/nchembio.2007.42. Epub 2007 Oct 21.

Genetically encoded molecules for inducibly inactivating CaV channels

Affiliations

Genetically encoded molecules for inducibly inactivating CaV channels

Tingting Yang et al. Nat Chem Biol. 2007 Dec.

Abstract

Voltage-gated Ca2+ (Ca(V)) channels are central to the biology of excitable cells, and therefore regulating their activity has widespread applications. We describe genetically encoded molecules for inducibly inhibiting Ca(V) channels (GEMIICCs). GEMIICCs are derivatives of Rem, a Ras-like GTPase that constitutively inhibits Ca2+ currents (I(Ca)). C terminus-truncated Rem(1-265) lost the ability to inhibit I(Ca) owing to loss of membrane targeting. Fusing the C1 domain of protein kinase Cgamma to yellow fluorescent protein (YFP)-Rem(1-265) generated a molecule that rapidly translocated from cytosol to plasma membrane with phorbol-12,13-dibutyrate in human embryonic kidney cells. Recombinant Ca(V)2.2 and Ca(V)1.2 channels were inhibited concomitantly with C1(PKCgamma)-YFP-Rem(1-265) membrane translocation. The generality of the approach was confirmed by creating a GEMIICC using rapamycin-dependent heterodimerization of YFP-FKBP-Rem(1-265) and a constitutively membrane-targeted rapamycin-binding domain. GEMIICCs reduced I(Ca) without diminishing gating charge, thereby ruling out decreased number of surface channels and voltage-sensor immobilization as mechanisms for inhibition. We introduce small-molecule-regulated GEMIICCs as potent tools for rapidly manipulating Ca2+ signals in excitable cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources