In the 1960s, total hip replacement revolutionised management of elderly patients crippled with arthritis, with very good long-term results. Today, young patients present for hip-replacement surgery hoping to restore their quality of life, which typically includes physically demanding activities. Advances in bioengineering technology have driven development of hip prostheses. Both cemented and uncemented hips can provide durable fixation. Better materials and design have allowed use of large-bore bearings, which provide an increased range of motion with enhanced stability and very low wear. Minimally invasive surgery limits soft-tissue damage and facilitates accelerated discharge and rehabilitation. Short-term objectives must not compromise long-term performance. Computer-assisted surgery will contribute to reproducible and accurate placement of implants. Universal economic constraints in healthcare services dictate that further developments in total hip replacement will be governed by their cost-effectiveness.