Role of cell-matrix interactions in osteoclast differentiation

Adv Exp Med Biol. 2007;602:107-11. doi: 10.1007/978-0-387-72009-8_14.


Osteoclast and their mononuclear cell precursors are present within the bone microenvironment at sites of physiologic and pathologic bone resorption. Analysis of tissues from sites of bone resorption reveal that cells expressing the full morphological and functional properties of mature osteoclasts are restricted to the immediate bone surface. We hypothesize that in addition to cytokines, components of the bone matrix and specific cell surface receptors on osteoclasts and their precursors play an essential role in determining the genetic profile and functional properties of fully differentiated resorbing osteoclasts. We have employed expression profiling, with an in vitro model of matrix-dependent osteoclast differentiation, to identify the molecular pathways by which bone matrix-interactions induce terminal osteoclast differentiation and activation. In preliminary studies, we have identified unique genes and transcriptional pathways that are induced by interaction of osteoclast precursors with specific components of the mineralized bone matrix. The authenticity of the gene profiles, as markers of osteoclast differentiation and activation, have been provisionally validated using an in vivo animal bone implantation model and by examination of tissues from patients with specific forms of pathologic osteoclast-mediated bone resorption. The ultimate goal of our studies is to identify new molecular targets for inhibiting osteoclast-mediated bone loss in disorders of pathologic bone loss. The early work of Walker et al. (Walker 1972) in parabiotic animals, and the subsequent studies of Burger et al. (Burger, Van der Meer, van de Gevel, et al. 1982) using a co-culture model with fetal bone rudiments and bone marrow-derived cells, have helped to establish that osteoclasts are derived from macrophage precursors of colony forming unit-macrophage (CFU-M lineage). As such, they share a common hematopoietic origin with other CFU-M lineage cells, including tissue macrophages that populate the lung (alveolar macrophages), liver (Kupfer cells), synovium (synovial macrophages) and other organs. They also share a common lineage

MeSH terms

  • Animals
  • Bone Matrix / physiology*
  • Bone Resorption
  • Bone and Bones
  • Cell Adhesion Molecules / metabolism*
  • Cell Differentiation*
  • Humans
  • Integrins / metabolism*
  • Macrophage Colony-Stimulating Factor / metabolism*
  • Macrophages / metabolism*
  • Mice
  • Osteoblasts
  • Osteoclasts / cytology*
  • Osteoclasts / metabolism


  • Cell Adhesion Molecules
  • Integrins
  • Macrophage Colony-Stimulating Factor