Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;19(12):3262-92.
doi: 10.1162/neco.2007.19.12.3262.

Stochastic Dynamics of a Finite-Size Spiking Neural Network

Affiliations

Stochastic Dynamics of a Finite-Size Spiking Neural Network

Hédi Soula et al. Neural Comput. .

Abstract

We present a simple Markov model of spiking neural dynamics that can be analytically solved to characterize the stochastic dynamics of a finite-size spiking neural network. We give closed-form estimates for the equilibrium distribution, mean rate, variance, and autocorrelation function of the network activity. The model is applicable to any network where the probability of firing of a neuron in the network depends on only the number of neurons that fired in a previous temporal epoch. Networks with statistically homogeneous connectivity and membrane and synaptic time constants that are not excessively long could satisfy these conditions. Our model completely accounts for the size of the network and correlations in the firing activity. It also allows us to examine how the network dynamics can deviate from mean field theory. We show that the model and solutions are applicable to spiking neural networks in biophysically plausible parameter regimes.

Similar articles

See all similar articles

Cited by 8 articles

See all "Cited by" articles

Publication types

LinkOut - more resources

Feedback