Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice

J Clin Invest. 2007 Nov;117(11):3421-6. doi: 10.1172/JCI32430.


Abnormal angiogenesis plays a key role in diseases of aging such as heart disease, certain cancers, and eye diseases including age-related macular degeneration. Macrophages have been shown previously to be both anti- and proangiogenic, and their role in regulating angiogenesis at sites of tissue injury is critical and complex. In this study, we analyzed cytokine gene expression patterns of mouse macrophages by real-time quantitative PCR and tested the functional effects of senescence on gene expression and macrophage polarization. Following laser injury to the retina, IL-10 was upregulated and Fas ligand (FasL), IL-12, and TNF-alpha were downregulated in ocular macrophages of old mice (>18 months of age). Downregulation of FasL on macrophages led to a loss of the antiangiogenic phenotype, as evidenced by the inability of these macrophages to inhibit vascular endothelial cells. Our results demonstrate that senescence, FasL, and IL-10 are key determinants of macrophage function that alter the growth of abnormal postdevelopmental blood vessels in disease processes including blinding eye disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / physiology*
  • Animals
  • Cellular Senescence / physiology
  • Choroidal Neovascularization* / immunology
  • Choroidal Neovascularization* / pathology
  • Cytokines / genetics
  • Cytokines / immunology
  • Cytokines / metabolism
  • Gene Expression Regulation*
  • Humans
  • Interleukin-10 / genetics
  • Interleukin-10 / metabolism
  • Lasers
  • Macrophage Activation / physiology*
  • Macrophages / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Retina / immunology
  • Retina / pathology


  • Cytokines
  • Interleukin-10