Molecular biology of the baculovirus occlusion-derived virus envelope

Curr Drug Targets. 2007 Oct;8(10):1084-95. doi: 10.2174/138945007782151315.


Study of the biology of the occlusion-derived virus (ODV) of the baculovirus Autographa californica nucleopolyhedrovirus provides opportunities to reveal new discoveries into the mechanism of several cellular pathways. The synchronous pulse of multiple ODV envelope proteins that integrate into the endoplasmic reticulum (ER) and traffic to the nuclear membranes on their way to the ODV envelope provide a unique tool to study the mechanisms of integral membrane protein trafficking from the ER to the outer and inner nuclear membrane. Studies of the formation of virus-induced, intranuclear membrane microvesicles provide insight on mechanisms that alter fluidity and regulate budding of the inner nuclear membrane. Since ODV is specially adapted for primary infection of the insect gut, studies of the structure and function of ODV envelope proteins reveals insights on the mechanism of viral invasion of the gut and this knowledge is fundamental for the development of new strategies for insect control. This review focuses on recent advances in understanding the source of the ODV envelope and the molecular events that sort and traffic integral membrane proteins from the ER to the ODV envelope. The composition of ODV is reviewed, however it is worth noting that the function of many ODV proteins are currently unknown.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Endoplasmic Reticulum / metabolism
  • Insecta / virology*
  • Molecular Biology
  • Molecular Sequence Data
  • Nuclear Envelope / virology
  • Nucleopolyhedroviruses / genetics*
  • Viral Envelope Proteins / physiology*


  • Viral Envelope Proteins