Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects

J Neural Transm Suppl. 2007;(72):113-20. doi: 10.1007/978-3-211-73574-9_14.


Biochemical studies on postmortem brains of patients with Parkinson's disease (PD) have greatly contributed to our understanding of the molecular pathogenesis of this disease. The discovery by 1960 of a dopamine deficiency in the nigro-striatal dopamine region of the PD brain was a landmark in research on PD. At that time we collaborated with Hirotaro Narabayashi and his colleagues in Japan and with Peter Riederer in Germany on the biochemistry of PD by using postmortem brain samples in their brain banks. We found that the activity, mRNA level, and protein content of tyrosine hydroxylase (TH), as well as the levels of the tetrahydrobiopterin (BH4) cofactor of TH and the activity of the BH4-synthesizing enzyme, GTP cyclohydrolase I (GCHI), were markedly decreased in the substantia nigra and striatum in the PD brain. In contrast, the molecular activity (enzyme activity/enzyme protein) of TH was increased, suggesting a compensatory increase in the enzyme activity. The mRNA levels of all four isoforms of human TH (hTH1-hTH4), produced by alternative mRNA splicing, were also markedly decreased. This finding is in contrast to a completely parallel decrease in the activity and protein content of dopamine beta-hydroxylase (DBH) without changes in its molecular activity in cerebrospinal fluid (CSF) in PD. We also found that the activities and/or the levels of the mRNA and protein of aromatic L-amino acid decarboxylase (AADC, DOPA decarboxylase), DBH, phenylethanolamine N-methyltransferase (PNMT), which synthesize dopamine, noradrenaline, and adrenaline, respectively, were also decreased in PD brains, indicating that all catecholamine systems were widely impaired in PD brains. Programmed cell death of the nigro-striatal dopamine neurons in PD has been suggested from the following findings on postmortem brains: (1) increased levels of pro-inflammatory cytokines such as TNF-alpha and IL-6; (2) increased levels of apoptosis-related factors such as TNF-alpha receptor R1 (p 55), soluble Fas and bcl-2, and increased activities of caspases 1 and 3; and (3) decreased levels of neurotrophins such as brain-derived nerve growth factor (BDNF). Immunohistochemical data and the mRNA levels of the above molecules in PD brains supported these biochemical data. We confirmed by double immunofluorescence staining the production of TNF-alpha and IL-6 in activated microglia in the putamen of PD patients. Owing to the recent development of highly sensitive and wide-range analytical methods for quantifying mRNAs and proteins, future assays of the levels of various mRNAs and proteins not only in micro-dissected brain tissues containing neurons and glial cells, but also in single cells from frozen brain slices isolated by laser capture micro-dissection, coupled with toluidine blue, Nissl staining or immunohistochemical staining, should further contribute to the elucidation of the molecular pathogenesis of PD and other neurodegenerative or neuropsychiatric diseases.

Publication types

  • Review

MeSH terms

  • Biopterin / analogs & derivatives
  • Biopterin / genetics
  • Biopterin / metabolism
  • Corpus Striatum / pathology*
  • Dopamine / genetics
  • Dopamine / metabolism*
  • Dopamine beta-Hydroxylase / genetics
  • Dopamine beta-Hydroxylase / metabolism
  • Epinephrine / genetics
  • Epinephrine / metabolism
  • Forecasting
  • GTP Cyclohydrolase / genetics
  • GTP Cyclohydrolase / metabolism
  • Humans
  • Interleukin-6 / genetics
  • Interleukin-6 / metabolism
  • Microdissection
  • Norepinephrine / genetics
  • Norepinephrine / metabolism
  • Parkinson Disease / genetics
  • Parkinson Disease / pathology*
  • RNA, Messenger / genetics
  • Substantia Nigra / pathology*
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / metabolism
  • Tyrosine 3-Monooxygenase / genetics
  • Tyrosine 3-Monooxygenase / metabolism


  • Interleukin-6
  • RNA, Messenger
  • Tumor Necrosis Factor-alpha
  • Biopterin
  • Tyrosine 3-Monooxygenase
  • Dopamine beta-Hydroxylase
  • GTP Cyclohydrolase
  • sapropterin
  • Dopamine
  • Norepinephrine
  • Epinephrine