Action spectra again?

Photochem Photobiol. 1991 Nov;54(5):859-70. doi: 10.1111/j.1751-1097.1991.tb02103.x.


Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates of effect. Preliminary estimates suggest that ozone layer depletion may seriously impact such important biological end-points as skin cancer, cataracts, the immune system, crop yields, and oceanic phytoplankton. So action spectra continue to play a central role in important photobiological research.

Publication types

  • Review

MeSH terms

  • Animals
  • Atmosphere
  • Cells / radiation effects
  • Humans
  • Ozone / radiation effects*
  • Photochemistry*
  • Spectrophotometry*
  • Ultraviolet Rays / adverse effects*


  • Ozone