Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 22 (4), 1135-43

Calmodulin Regulates the Trafficking of KCNQ2 Potassium Channels

Affiliations

Calmodulin Regulates the Trafficking of KCNQ2 Potassium Channels

Ainhoa Etxeberria et al. FASEB J.

Abstract

Voltage-dependent potassium KCNQ2 (Kv7.2) channels play a prominent role in the control of neuronal excitability. These channels must associate with calmodulin to function correctly and, indeed, a mutation (R353G) that impairs this association provokes the onset of a form of human neonatal epilepsy known as benign familial neonatal convulsions (BFNC). We show here that perturbation of calmodulin binding leads to endoplasmic reticulum (ER) retention of KCNQ2, reducing the number of channels that reach the plasma membrane. Interestingly, elevating the expression of calmodulin in the BFNC mutant partially restores the intracellular distribution of the KCNQ channel. In contrast, overexpression of a Ca(2+)-binding incompetent calmodulin or sequestering of calmodulin promotes the retention of wild-type channels in the ER. Thus, a direct interaction with Ca(2+)-calmodulin appears to be critical for the correct activity of KCNQ2 potassium channels as it controls the channels' exit from the ER.

Similar articles

See all similar articles

Cited by 48 PubMed Central articles

See all "Cited by" articles

Publication types

LinkOut - more resources

Feedback