We derive a continuous limit of a two-dimensional stochastic cellular Potts model (CPM) describing cells moving in a medium and reacting to each other through direct contact, cell-cell adhesion, and long-range chemotaxis. All coefficients of the general macroscopic model in the form of a Fokker-Planck equation describing evolution of the cell probability density function are derived from parameters of the CPM. A very good agreement is demonstrated between CPM Monte Carlo simulations and a numerical solution of the macroscopic model. It is also shown that, in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. A general multiscale approach is demonstrated by simulating spongy bone formation, suggesting that self-organizing physical mechanisms can account for this developmental process.