Translating network models to parallel hardware in NEURON
- PMID: 17997162
- PMCID: PMC2430920
- DOI: 10.1016/j.jneumeth.2007.09.010
Translating network models to parallel hardware in NEURON
Abstract
The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical question is how to move a working network model from a single processor to parallel hardware. Here we show how to make this transition for models implemented with NEURON, in such a way that the final result will run and produce numerically identical results on either serial or parallel hardware. This allows users to develop and debug models on readily available local resources, then run their code without modification on a parallel supercomputer.
Figures
Similar articles
-
A quantitative analysis of the performance of computing architectures used in neural simulations.J Neurosci Methods. 2019 Jan 1;311:57-66. doi: 10.1016/j.jneumeth.2018.10.001. Epub 2018 Oct 3. J Neurosci Methods. 2019. PMID: 30291861
-
Large neural network simulations on multiple hardware platforms.J Comput Neurosci. 1998 Dec;5(4):443-59. doi: 10.1023/a:1008893429695. J Comput Neurosci. 1998. PMID: 9877024
-
ARACHNE: A neural-neuroglial network builder with remotely controlled parallel computing.PLoS Comput Biol. 2017 Mar 31;13(3):e1005467. doi: 10.1371/journal.pcbi.1005467. eCollection 2017 Mar. PLoS Comput Biol. 2017. PMID: 28362877 Free PMC article.
-
Human-scale Brain Simulation via Supercomputer: A Case Study on the Cerebellum.Neuroscience. 2021 May 10;462:235-246. doi: 10.1016/j.neuroscience.2021.01.014. Epub 2021 Jan 20. Neuroscience. 2021. PMID: 33482329 Review.
-
Connectivity concepts in neuronal network modeling.PLoS Comput Biol. 2022 Sep 8;18(9):e1010086. doi: 10.1371/journal.pcbi.1010086. eCollection 2022 Sep. PLoS Comput Biol. 2022. PMID: 36074778 Free PMC article. Review.
Cited by
-
Toward a full-scale computational model of the rat dentate gyrus.Front Neural Circuits. 2012 Nov 16;6:83. doi: 10.3389/fncir.2012.00083. eCollection 2012. Front Neural Circuits. 2012. PMID: 23162433 Free PMC article.
-
Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage.Commun Biol. 2020 May 8;3(1):222. doi: 10.1038/s42003-020-0953-x. Commun Biol. 2020. PMID: 32385389 Free PMC article.
-
Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells.Front Cell Neurosci. 2017 Mar 15;11:71. doi: 10.3389/fncel.2017.00071. eCollection 2017. Front Cell Neurosci. 2017. PMID: 28360841 Free PMC article.
-
Stoney vs. Histed: Quantifying the spatial effects of intracortical microstimulation.Brain Stimul. 2022 Jan-Feb;15(1):141-151. doi: 10.1016/j.brs.2021.11.015. Epub 2021 Nov 30. Brain Stimul. 2022. PMID: 34861412 Free PMC article.
-
Statistical Emulation of Neural Simulators: Application to Neocortical L2/3 Large Basket Cells.Front Big Data. 2022 Mar 25;5:789962. doi: 10.3389/fdata.2022.789962. eCollection 2022. Front Big Data. 2022. PMID: 35402905 Free PMC article.
References
-
- Bush PC, Prince DA, Miller KD. Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model. J Neurophysiol. 1999;82:1748–58. - PubMed
-
- Carnevale NT, Hines ML. The NEURON Book. Cambridge University Press; Cambridge, UK: 2006.
-
- Davison AP, Feng JF, Brown D. Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. J Neurophysiol. 2003;90:1921–35. - PubMed
-
- Hines ML, Carnevale NT. Discrete event simulation in the NEURON environment. Neurocomputing. 2004;58–60:1117–22.
-
- Kirkpatrick S. Rough times ahead. Science. 2003;299:668–69. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
