Degradation of Bis(4-Hydroxyphenyl)methane (bisphenol F) by Sphingobium yanoikuyae strain FM-2 isolated from river water

Appl Environ Microbiol. 2008 Jan;74(2):352-8. doi: 10.1128/AEM.01708-07. Epub 2007 Nov 16.


Three bacteria capable of utilizing bis(4-hydroxyphenyl)methane (bisphenol F [BPF]) as the sole carbon source were isolated from river water, and they all belonged to the family Sphingomonadaceae. One of the isolates, designated Sphingobium yanoikuyae strain FM-2, at an initial cell density of 0.01 (optical density at 600 nm) completely degraded 0.5 mM BPF within 9 h without any lag period under inductive conditions. Degradation assays of various bisphenols revealed that the BPF-metabolizing system of strain FM-2 was effective only on the limited range of bisphenols consisting of two phenolic rings joined together through a bridging carbon without any methyl substitution on the rings or on the bridging structure. A BPF biodegradation pathway was proposed on the basis of metabolite production patterns and identification of the metabolites. The initial step of BPF biodegradation involves hydroxylation of the bridging carbon to form bis(4-hydroxyphenyl)methanol, followed by oxidation to 4,4'-dihydroxybenzophenone. The 4,4'-dihydroxybenzophenone appears to be further oxidized by the Baeyer-Villiger reaction to 4-hydroxyphenyl 4-hydroxybenzoate, which is then cleaved by oxidation to form 4-hydroxybenzoate and 1,4-hydroquinone. Both of the resultant simple aromatic compounds are mineralized.

MeSH terms

  • Benzhydryl Compounds / chemistry
  • Benzhydryl Compounds / metabolism*
  • Biodegradation, Environmental
  • Chromatography, High Pressure Liquid
  • Fresh Water / microbiology*
  • Gas Chromatography-Mass Spectrometry
  • Models, Biological
  • Molecular Sequence Data
  • Molecular Structure
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Sphingomonadaceae / genetics
  • Sphingomonadaceae / isolation & purification
  • Sphingomonadaceae / metabolism*


  • Benzhydryl Compounds
  • RNA, Ribosomal, 16S
  • 4,4'-bisphenol F

Associated data

  • GENBANK/AB331237
  • GENBANK/AB331238
  • GENBANK/AB331239