The aging brain

Annu Rev Pathol. 2008;3:41-66. doi: 10.1146/annurev.pathmechdis.2.010506.092044.


Aging is accompanied by cognitive decline in a major segment of the population and is the primary risk factor for Alzheimer's disease and other prevalent neurodegenerative disorders. Despite this central role in disease pathogenesis and morbidity, the aging of the brain has not been well understood at a molecular level. This review seeks to integrate what is known about age-related cognitive and neuroanatomical changes with recent advances in understanding basic molecular mechanisms that underlie aging. An important issue is how normal brain aging transitions to pathological aging, giving rise to neurodegenerative disorders. Toxic protein aggregates have been identified as potential contributory factors, including amyloid beta-protein in Alzheimer's disease, tau in frontotemporal dementia, and alpha-synuclein in Parkinson's disease. However, current models of pathogenesis do not explain the origin of the common sporadic forms of these diseases or address the critical nexus between aging and disease. This review discusses potential approaches to unifying the systems biology of the aging brain with the pathogenesis of neurodegeneration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aging / physiology*
  • Animals
  • Brain / physiology*
  • Humans