Unprecedented aromatic homolytic substitutions and cyclization of amide-iminyl radicals: experimental and theoretical study

Chemistry. 2008;14(4):1238-52. doi: 10.1002/chem.200700884.

Abstract

Amide-iminyl radicals are versatile and efficient intermediates in cascade radical cyclizations of N-acylcyanamides. They are easily trapped by alkenes or (hetero-)aromatic rings and cyclize into a series of new heterocyclic compounds which bear a pyrroloquinazoline moiety. As an illustration of the synthetic importance of these compounds, the total synthesis of the natural antitumor compound luotonin A was achieved through a tin-free radical cascade cyclization process. Not only do amide-iminyl radicals lead to new tetracyclic heterocycles but these nitrogen-centered radical species also react in aromatic homolytic substitutions. Indeed, the amide-iminyl radical moiety unprecedentedly displaces methyl, methoxy, and fluorine radicals from an aromatic carbon atom. This seminal reaction in the field of radical chemistry has been developed experimentally and its mechanism has additionally been investigated by a theoretical study.