Spermatogenesis

WormBook. 2006 Feb 20:1-14. doi: 10.1895/wormbook.1.85.1.

Abstract

Spermatogenesis creates functional sperm from an initially undifferentiated germ cell. In the nematode Caenorhabditis elegans, both males and hermaphrodites engage in spermatogenesis. The hermaphrodite germ line, like that of the male, initiates spermatogenesis during the L4 larval stage. The hermaphrodite germ line differs from that of the male because it ceases spermatogenesis and switches to oogenesis during the adult stage. Each hermaphrodite stores her sperm and uses them to fertilize her oocytes. Many mutants have been identified where hermaphrodite self-fertility is disrupted. If such a self-sterile hermaphrodite is mated to a wild-type male, mutant hermaphrodites that either lack sperm or contain defective sperm will produce outcross progeny. Easily implemented tests are then applied to identify the subset of these mutants that produce defective sperm. Currently, more than 44 genes are known that are required for normal spermatogenesis. This chapter discusses the 25 best-understood genes that affect spermatogenesis and mutants are grouped based on the cellular structure or process that is affected. C. elegans spermatozoa lack an acrosome and a flagellum, which are organelles found in the spermatozoa produced by most other species. Like other nematodes, C. elegans spermatozoa move by crawling using a single pseudopod. Wild-type spermatogenesis and its defects in mutants can be studied in vivo because the animal is transparent and in vitro because a simple, chemically defined medium that supports development has been discovered. Unlike nearly all other C. elegans cells, homogeneous sperm can be obtained in sufficient quantities to permit biochemical analyses.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / physiology*
  • Cytoskeleton / genetics
  • Fertilization / genetics
  • Humans
  • Male
  • Mutation
  • Organelles
  • Sex Characteristics
  • Spermatogenesis / genetics*