Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct;40(2):399-407.
doi: 10.1016/0091-3057(91)90571-i.

Ketamine-induced hyperlocomotion associated with alteration of presynaptic components of dopamine neurons in the nucleus accumbens of mice

Affiliations

Ketamine-induced hyperlocomotion associated with alteration of presynaptic components of dopamine neurons in the nucleus accumbens of mice

M Irifune et al. Pharmacol Biochem Behav. 1991 Oct.

Abstract

The underlying mechanisms of ketamine-induced hyperlocomotion were examined in mice. An intraperitoneal (IP) injection of ketamine (3-150 mg/kg) increased locomotor activity in a dose-dependent fashion. A low dose of ketamine (30 mg/kg) produced peak locomotion within the first 10 min followed by a rapid decline. In contrast, a high dose (150 mg/kg) inhibited locomotor activity to the control level during the first 30 min. Thereafter the activity gradually increased and reached a peak at approximately 2 h followed by a gradual decline. The hyperactivities induced by both low and high doses of ketamine were inhibited by a low dose of haloperidol (0.10 mg/kg, IP), a dopamine (DA) receptor antagonist. However, neither a high dose of phenoxybenzamine (10 mg/kg, IP), an alpha-blocker nor a high dose of propranolol (20 mg/kg, IP), a beta-blocker inhibited the hyperactivities. Destruction of catecholaminergic terminals by 6-hydroxydopamine suppressed ketamine-induced hyperlocomotion. Regional brain monoamine assays revealed that, at peak locomotion, a low dose of ketamine (30 mg/kg) selectively increased DA turnover in the nucleus accumbens which is a forebrain region believed to be involved in the initiation and regulation of locomotor activity, while a high dose (150 mg/kg) increased not only DA but also norepinephrine and serotonin turnover in many regions of the brain. In vitro, ketamine slightly provoked [3H]DA release from nucleus accumbens and striatal slices to a similar extent, but inhibited synaptosomal uptake of [3H]DA in the nucleus accumbens to a greater degree than in the striatum.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources