What is reinforced by phasic dopamine signals?

Brain Res Rev. 2008 Aug;58(2):322-39. doi: 10.1016/j.brainresrev.2007.10.007. Epub 2007 Oct 26.


The basal ganglia have been associated with processes of reinforcement learning. A strong line of supporting evidence comes from the recording of dopamine (DA) neurones in behaving monkeys. Unpredicted, biologically salient events, including rewards cause a stereotypic short-latency (70-100 ms), short-duration (100-200 ms) burst of DA activity - the phasic response. This response is widely considered to represent reward prediction errors used as teaching signals in appetitive learning to promote actions that will maximise future reward acquisition. For DA signalling to perform this function, sensory processing afferent to DA neurones should discriminate unpredicted reward-related events. However, the comparative response latencies of DA neurones and orienting gaze-shifts indicate that phasic DA responses are triggered by pre-attentive sensory processing. Consequently, in circumstances where biologically salient events are both spatially and temporally unpredictable, it is unlikely their identity will be known at the time of DA signalling. The limited quality of afferent sensory processing and the precise timing of phasic DA signals, suggests that they may play a less direct role in 'Law of Effect' appetitive learning. Rather, the 'time-stamp' nature of the phasic response, in conjunction with the other signals likely to be present in the basal ganglia at the time of phasic DA input, suggests it may reinforce the discovery of unpredicted sensory events for which the organism is responsible. Furthermore, DA-promoted repetition of preceding actions/movements should enable the system to converge on those aspects of context and behavioural output that lead to the discovery of novel actions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Dopamine / physiology*
  • Humans
  • Neural Pathways / physiology*
  • Neurons / physiology*
  • Reinforcement, Psychology*
  • Substantia Nigra / cytology
  • Substantia Nigra / physiology


  • Dopamine