Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1 alpha: implications for metabolic disease

Appl Physiol Nutr Metab. 2007 Oct;32(5):874-83. doi: 10.1139/H07-083.


Dyslipidemia and intramuscular accumulation of fatty acid metabolites are increasingly recognized as core features of obesity and type 2 diabetes. Emerging evidence suggests that normal physiological adaptations to a heavy lipid load depend on the coordinated actions of broad transcriptional regulators such as the peroxisome proliferator activated receptors (PPARs) and PPAR gamma coactivator 1 alpha (PGC1 alpha). The application of transcriptomics and targeted metabolic profiling tools based on mass spectrometry has led to our finding that lipid-induced insulin resistance is a condition in which upregulation of PPAR-targeted genes and high rates of beta-oxidation are not supported by a commensurate upregulation of tricarboxylic acid (TCA) cycle activity. In contrast, exercise training enhances mitochondrial performance, favoring tighter coupling between beta-oxidation and the TCA cycle, and concomitantly restores insulin sensitivity in animals fed a chronic high-fat diet. The exercise-activated transcriptional coactivator, PGC1 alpha, plays a key role in coordinating metabolic flux through these 2 intersecting metabolic pathways, and its suppression by overfeeding may contribute to diet-induced mitochondrial dysfunction. Our emerging model predicts that muscle insulin resistance arises from a mitochondrial disconnect between beta-oxidation and TCA cycle activity. Understanding of this "disconnect" and its molecular basis may lead to new therapeutic approaches to combatting metabolic disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Fatty Acids / metabolism*
  • Humans
  • Muscle, Skeletal / metabolism*
  • Peroxisome Proliferator-Activated Receptors / metabolism*
  • Transcription Factors / metabolism*


  • Fatty Acids
  • Peroxisome Proliferator-Activated Receptors
  • Transcription Factors
  • peroxisome-proliferator-activated receptor-gamma coactivator-1