Hormetic effects of regular exercise in aging: correlation with oxidative stress

Appl Physiol Nutr Metab. 2007 Oct;32(5):948-53. doi: 10.1139/H07-092.


To explore mechanisms of the beneficial consequences of regular exercise, we studied the effects of regular swimming and treadmill exercise on oxidative stress in the brain and liver of rats. Protein carbonyl was significantly reduced and the activity of proteasome was upregulated in the brain extracts of young and middle-aged animals after 9 weeks of swimming training. Furthermore, their cognitive functions were significantly improved. In separate experiments, the activation of transcription nuclear factor kappaB was attenuated in the liver of old rats after 8 weeks of regular treadmill exercise and the DNA binding activity of glucocorticoid receptor reduced with age was restored, suggesting that inflammatory reactions are alleviated by the regimen. This was accompanied by upregulation of the glutathione level and reduced reactive oxygen species generation. Similar training reduced the 8-oxodeoxyguanosine content in the nuclear and mitochondrial DNA of the liver of old rats. Thus, these findings, together with reports of other investigators, suggest that moderate regular exercise attenuates oxidative stress. The mild oxidative stress possibly elicited by regular exercise appears to manifest a hormesis-like effect in nonmuscular tissues, constituting beneficial mechanisms of exercise by adaptively upregulating various antioxidant mechanisms, including antioxidative and repair-degradation enzymes for damaged molecules. Importantly, the adaptation induced by regular exercise was effective even if initiated late in life.

Publication types

  • Review

MeSH terms

  • Aging / physiology*
  • Animals
  • Exercise / physiology*
  • Humans
  • Oxidative Stress / physiology*
  • Physical Conditioning, Animal / physiology*