Ovule morphogenesis in Ranunculaceae and its systematic significance

Ann Bot. 2008 Feb;101(3):447-62. doi: 10.1093/aob/mcm298. Epub 2007 Dec 7.

Abstract

Background and aims: Ranunculaceae has a prominent phylogenetic position in Ranunculales which appears at the base of eudicots. The aims of the present paper are to reveal the features of ovule morphogenesis in different taxa and gain a better understanding of the systematics of Ranunculaceae.

Methods: Flowers of 17 species from three subfamilies, nine tribes and 16 genera of Ranunculaceae, at successive developmental stages, were collected in the wild and studied with a scanning electron microscope.

Key results: The integuments in the unitegmic ovules in Helleborus, Ranunculus and Oxygraphis, as well as the inner integuments in the bitegmic genera, initiate annularly and eventually become cup-shaped. However, the integuments in the unitegmic ovules in Anemone and Clematis, as well as the outer integuments in the bitegmic genera, arise semi-annularly and eventually become hood-shaped. Different kinds of appendages appear on the ovules during development. In Coptis of subfamily Coptidoideae, a wrap-shaped appendage arises outside the ovule and envelopes the ovule entirely. In the genera of subfamily Thalictroideae and tribe Anemoneae of subfamily Ranunculoideae, appendages appear on the placenta, the funicle or both. In tribe Helleboreae of subfamily Ranunculoideae, an alary appendage is initiated where the integument and the funicle join and becomes hood-shaped.

Conclusions: Ovule morphogenesis characteristics are significant in classification at the levels of subfamilies and tribes. The initiation patterns of the integuments and the development of appendages show diversity in Ranunculaceae. The present observations suggest that the bitegmic, hood-shaped outer integument and endostomic micropyle are primitive while the unitegmic, cupular-shaped outer integument and bistomic micropyle are derivative.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Morphogenesis*
  • Ranunculaceae / growth & development*