Effect of time-of-day-specific strength training on serum hormone concentrations and isometric strength in men

Chronobiol Int. 2007;24(6):1159-77. doi: 10.1080/07420520701800686.


A time-of-day influence on the neuromuscular response to strength training has been previously reported. However, no scientific study has examined the influence of the time of day when strength training is performed on hormonal adaptations. Therefore, the primary purpose of this study was to examine the effects of time-of-day-specific strength training on resting serum concentrations and diurnal patterns of testosterone (T) and cortisol (CORT) as well as maximum isometric strength of knee extensors. Thirty eight diurnally active healthy, previously untrained men (age 20-45 yrs) underwent a ten-week preparatory strength training period when sessions were conducted between 17:00-19:00 h. Thereafter, these subjects were randomized into either a morning (n=20, training times 07:00-09:00 h) or afternoon (n=18, 7:00-19:00 h) training group for another ten-week period of time-of-day-specific training (TST). Isometric unilateral knee extension peak torque (MVC) was measured at 07:00, 12:00, 17:00, and 20:30 h over two consecutive days (Day 1 & Day 2) before and after TST. Blood samples were obtained before each clock-time measurement to assess resting serum T and CORT concentrations. A matched control group (n=11) did not train but participated in the tests. Serum T and CORT concentrations significantly declined from 07:00 to 20:30 h on all test days (Time effect, p<.001). Serum CORT at 07:00 h was significantly higher on Day 1 than Day 2 in the control and afternoon group, both in Pre and Post conditions (Day x Time interaction, p<.01). In the morning group, a similar day-to-day difference was present in the Pre but not Post conditions (Time x Group interaction, p<.05). MVC significantly increased after TST in both the morning and afternoon groups (Pre to Post effect, p<.001). In both groups, a typical diurnal variation in MVC (Time effect, p<.001) was found, especially on Day 2 in the Pre condition, and this feature persisted from Pre to Post in the afternoon group. In the morning group, however, diurnal variation was reduced after TST on both Day 1 and Day 2 (Pre to PostxDay x TimexGroup interaction, p<.05). In conclusion, 10 weeks of morning time-of-day-specific strength training resulted in reduced morning resting CORT concentrations, presumably as a result of decreased masking effects of anticipatory psychological stress prior to the morning testing. The typical diurnal pattern of maximum isometric strength was blunted by the TST period in the morning but not the afternoon group. However, the TST period had no significant effect on the resting total T concentration and its diurnal pattern and on the absolute increase in maximum strength.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Circadian Rhythm*
  • Exercise*
  • Humans
  • Hydrocortisone / blood*
  • Knee Joint / physiology
  • Male
  • Muscle Strength / physiology*
  • Testosterone / blood*
  • Torque


  • Testosterone
  • Hydrocortisone