Protein therapeutics for junctional epidermolysis bullosa: incorporation of recombinant beta3 chain into laminin 332 in beta3-/- keratinocytes in vitro

J Invest Dermatol. 2008 Jun;128(6):1476-86. doi: 10.1038/sj.jid.5701197. Epub 2007 Dec 13.

Abstract

Junctional epidermolysis bullosa (JEB) is an inherited mechanobullous disease characterized by reduced adherence of the epidermal keratinocytes to the underlying dermis, and is often caused by the absence of functional laminin 332 due to the lack or dysfunction of its beta3 chain. As there are no specific therapies for JEB, we tested whether a protein replacement strategy could be applicable for the restoration of the laminin 332 assembly and reversion of the JEB phenotype in human keratinocytes that lack beta3 subunit. Here, we developed the protocol for production and purification of the biologically active recombinant beta3 chain. Next, we demonstrated that delivery of recombinant beta3 polypeptide into the endoplasmic reticulum of the immortalized beta3-null keratinocytes led to the restoration of the laminin 332 assembly, secretion, and deposition into the basement membrane zone, as confirmed by Western blot analysis, confocal immunofluorescent microscopy in vitro, and on cultured organotypic human JEB skin reconstructs. Although the amount of laminin 332 produced by protein-treated beta3-null keratinocytes is lower than that in normal human keratinocytes, our results demonstrate the applicability of the recombinant proteins for JEB treatment and open new perspectives for the development of novel therapeutics for this inherited, currently intractable, skin disorder.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Cell Adhesion
  • Endoplasmic Reticulum / metabolism
  • Epidermolysis Bullosa, Junctional / therapy*
  • Humans
  • Integrin beta3 / genetics*
  • Integrin beta3 / physiology*
  • Keratinocytes / metabolism*
  • Laminin / chemistry*
  • Microscopy, Confocal
  • Models, Biological
  • Phenotype
  • Protein Transport
  • Recombinant Proteins / therapeutic use*
  • Skin / pathology
  • Tissue Engineering / methods
  • Transfection

Substances

  • Integrin beta3
  • Laminin
  • Recombinant Proteins