Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression

Cell. 2007 Dec 14;131(6):1097-108. doi: 10.1016/j.cell.2007.10.032.

Abstract

MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here, we show that all Argonautes elevate mature miRNA expression posttranscriptionally, independent of RNase activity. Also, we identify a role for the RISC slicer Argonaute2 (Ago2) in cleaving the pre-miRNA to an additional processing intermediate, termed Ago2-cleaved precursor miRNA or ac-pre-miRNA. This endogenous, on-pathway intermediate results from cleavage of the pre-miRNA hairpin 12 nucleotides from its 3'-end. By analogy to siRNA processing, Ago2 cleavage may facilitate removal of the nicked passenger strand from RISC after maturation. The multiple roles of Argonautes in the RNAi effector phase and miRNA biogenesis and maturation suggest coordinate regulation of microRNA expression and function.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Argonaute Proteins
  • Drosophila Proteins / physiology*
  • Eukaryotic Initiation Factors
  • MicroRNAs / physiology*
  • Models, Biological
  • RNA Precursors / physiology
  • RNA Processing, Post-Transcriptional*
  • RNA-Induced Silencing Complex / physiology*

Substances

  • AGO1 protein, Drosophila
  • AGO2 protein, Drosophila
  • Argonaute Proteins
  • Drosophila Proteins
  • Eukaryotic Initiation Factors
  • MicroRNAs
  • RNA Precursors
  • RNA-Induced Silencing Complex