Predictive coding and the slowness principle: an information-theoretic approach
- PMID: 18085988
- DOI: 10.1162/neco.2008.01-07-455
Predictive coding and the slowness principle: an information-theoretic approach
Abstract
Understanding the guiding principles of sensory coding strategies is a main goal in computational neuroscience. Among others, the principles of predictive coding and slowness appear to capture aspects of sensory processing. Predictive coding postulates that sensory systems are adapted to the structure of their input signals such that information about future inputs is encoded. Slow feature analysis (SFA) is a method for extracting slowly varying components from quickly varying input signals, thereby learning temporally invariant features. Here, we use the information bottleneck method to state an information-theoretic objective function for temporally local predictive coding. We then show that the linear case of SFA can be interpreted as a variant of predictive coding that maximizes the mutual information between the current output of the system and the input signal in the next time step. This demonstrates that the slowness principle and predictive coding are intimately related.
Similar articles
-
Spatiotemporal burst coding for extracting features of spatiotemporally varying stimuli.Biol Cybern. 2007 Oct;97(4):293-305. doi: 10.1007/s00422-007-0175-z. Epub 2007 Sep 6. Biol Cybern. 2007. PMID: 17805559
-
Sparse coding of sensory inputs.Curr Opin Neurobiol. 2004 Aug;14(4):481-7. doi: 10.1016/j.conb.2004.07.007. Curr Opin Neurobiol. 2004. PMID: 15321069 Review.
-
Optimal coding predicts attentional modulation of activity in neural systems.Neural Comput. 2007 May;19(5):1295-312. doi: 10.1162/neco.2007.19.5.1295. Neural Comput. 2007. PMID: 17381267
-
Recoding patterns of sensory input: higher-order features and the function of nonlinear dendritic trees.Neural Comput. 2008 Aug;20(8):2000-36. doi: 10.1162/neco.2008.04-07-511. Neural Comput. 2008. PMID: 18336083
-
The systems analysis approach to mechanosensory coding.Biol Cybern. 2009 Jun;100(6):417-26. doi: 10.1007/s00422-008-0262-9. Epub 2009 Jan 20. Biol Cybern. 2009. PMID: 19153763 Review.
Cited by
-
Hierarchical temporal prediction captures motion processing along the visual pathway.Elife. 2023 Oct 16;12:e52599. doi: 10.7554/eLife.52599. Elife. 2023. PMID: 37844199 Free PMC article.
-
Local minimization of prediction errors drives learning of invariant object representations in a generative network model of visual perception.Front Comput Neurosci. 2023 Sep 25;17:1207361. doi: 10.3389/fncom.2023.1207361. eCollection 2023. Front Comput Neurosci. 2023. PMID: 37818157 Free PMC article.
-
Expectation violations produce error signals in mouse V1.Cereb Cortex. 2023 Jun 20;33(13):8803-8820. doi: 10.1093/cercor/bhad163. Cereb Cortex. 2023. PMID: 37183176
-
Efficient Temporal Coding in the Early Visual System: Existing Evidence and Future Directions.Front Comput Neurosci. 2022 Jul 4;16:929348. doi: 10.3389/fncom.2022.929348. eCollection 2022. Front Comput Neurosci. 2022. PMID: 35874317 Free PMC article. Review.
-
Spatio-Temporally Efficient Coding Assigns Functions to Hierarchical Structures of the Visual System.Front Comput Neurosci. 2022 May 27;16:890447. doi: 10.3389/fncom.2022.890447. eCollection 2022. Front Comput Neurosci. 2022. PMID: 35694611 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources

