Stomatopod eye structure and function: a review
- PMID: 18089120
- DOI: 10.1016/j.asd.2007.01.006
Stomatopod eye structure and function: a review
Abstract
Stomatopods (mantis shrimps) possess apposition compound eyes that contain more photoreceptor types than any other animal described. This has been achieved by sub-dividing the eye into three morphologically discrete regions, a mid-band and two laterally placed hemispheres, and within the mid-band, making simple modifications to a commonly encountered crustacean photoreceptor pattern of eight photoreceptors (rhabdomeres) per ommatidium. Optically the eyes are also unusual with the directions of view of the ommatidia of all three eye regions skewed such that over 70% of the eye views a narrow strip in space. In order to scan the world with this strip, the stalked eyes of stomatopods are in almost continual motion. Functionally, the end result is a trinocular eye with monocular range finding capability, a 12-channel colour vision system, a 2-channel linear polarisation vision system and a line scan sampling arrangement that more resembles video cameras and satellite sensors than animal eyes. Not surprisingly, we are still struggling to understand the biological significance of stomatopod vision and attempt few new explanations here. Instead we use this special edition as an opportunity to review and summarise the structural aspects of the stomatopod retina that allow it to be so functionally complex.
Similar articles
-
A unique colour and polarization vision system in mantis shrimps.Nature. 1988 Jun 9;333(6173):557-60. doi: 10.1038/333557a0. Nature. 1988. PMID: 3374602
-
Photoreceptor projection and termination pattern in the lamina of gonodactyloid stomatopods (mantis shrimp).Cell Tissue Res. 2005 Aug;321(2):273-84. doi: 10.1007/s00441-005-1118-4. Epub 2005 Jun 10. Cell Tissue Res. 2005. PMID: 15947970
-
Parallel processing and image analysis in the eyes of mantis shrimps.Biol Bull. 2001 Apr;200(2):177-83. doi: 10.2307/1543312. Biol Bull. 2001. PMID: 11341580 Review.
-
Spectral tuning and the visual ecology of mantis shrimps.Philos Trans R Soc Lond B Biol Sci. 2000 Sep 29;355(1401):1263-7. doi: 10.1098/rstb.2000.0680. Philos Trans R Soc Lond B Biol Sci. 2000. PMID: 11079411 Free PMC article. Review.
-
Eye design and color signaling in a stomatopod crustacean Gonodactylus smithii.Brain Behav Evol. 2000 Aug;56(2):107-22. doi: 10.1159/000006681. Brain Behav Evol. 2000. PMID: 11111137
Cited by
-
Crustacean conundrums: a review of opsin diversity and evolution.Philos Trans R Soc Lond B Biol Sci. 2022 Oct 24;377(1862):20210289. doi: 10.1098/rstb.2021.0289. Epub 2022 Sep 5. Philos Trans R Soc Lond B Biol Sci. 2022. PMID: 36058240 Free PMC article. Review.
-
Polarization contrasts and their effect on the gaze stabilization of crustaceans.J Exp Biol. 2021 Apr 6;224(Pt 7):jeb229898. doi: 10.1242/jeb.229898. J Exp Biol. 2021. PMID: 33692078 Free PMC article.
-
Ultraviolet polarisation sensitivity in the stomatopod crustacean Odontodactylus scyllarus.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Dec;195(12):1153-62. doi: 10.1007/s00359-009-0491-y. Epub 2009 Nov 19. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009. PMID: 19924415 Free PMC article.
-
Sequence, Structure, and Expression of Opsins in the Monochromatic Stomatopod Squilla empusa.Integr Comp Biol. 2018 Sep 1;58(3):386-397. doi: 10.1093/icb/icy007. Integr Comp Biol. 2018. PMID: 29697793 Free PMC article.
-
Walking Drosophila align with the e-vector of linearly polarized light through directed modulation of angular acceleration.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Jun;200(6):603-14. doi: 10.1007/s00359-014-0910-6. Epub 2014 May 10. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014. PMID: 24810784 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
