The malignant primate?

Ann Genet. 1991;34(3-4):137-42.

Abstract

Speciation and carcinogenesis result from genomic instability at the gametic or at the somatic levels. After an infinity of trials they occur, by chromosome rearrangements, in single individuals or in single cells and evolve by similar chromosomal or clonal evolutions. Loss of heterozygosity for the first event is essential in both processes: in evolution, a chromosomal rearrangement, a pericentric inversion or a Robertsonian fusion, must become homozygous to ensure a reproductive barrier for a new species; Knudson's two-event sequence is a similar situation in cancer. Position effect is equally important: we have shown overexpression of the SOD1 gene in the orangutan phylum probably by an intrachromosomal rearrangement; the t(9;22) in CML acts by typical position effect. Parental imprinting underlies the evolution of genome function and the unset of certain cancers. Evolution and malignancy are interweaved by viruses and oncogenes since the dawn of life. Cancer uses its intelligence to expand and to destroy the other tissues, using subtle metabolic pathways and a variety of tricks to metastasize other cells. It always wins but saws the branch on which it sits. Mankind also grows exponentially, killing thousands of other species, poisoning the oceans and soft waters, polluting the atmosphere, all for his egoistic needs. Man also travels and metastasizes other Earths. He modifies his genome or that of other species, and develops new technologies for his reproduction. He can destroy the planet in an eyeblink. To be or not to be the malignant primate, that will be the dilemma for the 21st Century.

Publication types

  • Comparative Study
  • Review

MeSH terms

  • Animals
  • Biological Evolution
  • Hominidae / genetics*
  • Humans
  • Neoplasms / genetics*