Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 59 (4), 360-417

5-HT Receptor Regulation of Neurotransmitter Release

Affiliations
Review

5-HT Receptor Regulation of Neurotransmitter Release

Klaus B Fink et al. Pharmacol Rev.

Erratum in

  • Pharmacol Rev. 2008 Mar;60(1):142

Abstract

Serotoninergic neurons in the central nervous system impinge on many other neurons and modulate their neurotransmitter release. This review focuses on 1) the function of presynaptic 5-hydroxytryptamine (5-HT) heteroreceptors on axon terminals of central cholinergic, dopaminergic, noradrenergic, or GABAergic neurons and 2) the role of GABAergic interneurons expressing 5-HT heteroreceptors in the regulation of acetylcholine, dopamine, or noradrenaline release. In vitro studies on slices or synaptosomes and in vivo microdialysis experiments have shown that 5-HT(1A), 5-HT(1B), 5-HT(2A), 5-HT(2C), 5-HT(3), and/or 5-HT(4) heteroreceptors mediate this modulation. 5-HT(1B) receptors on neocortical cholinergic, striatal dopaminergic, or hippocampal GABAergic axon terminals are examples for release-inhibiting 5-HT heteroreceptors; 5-HT(3) receptors on hippocampal GABAergic or 5-HT(4) receptors on hippocampal cholinergic axon terminals are examples for release-facilitating 5-HT heteroreceptors. GABA released from GABAergic interneurons upon activation of facilitatory 5-HT receptors, e.g., 5-HT(2A) or 5-HT(3) receptors, mediates inhibition of the release of other neurotransmitters such as prefrontal neocortical dopamine or neocortical acetylcholine release, respectively. Conversely, attenuated GABA release in response to activation of inhibitory 5-HT heteroreceptors, e.g., 5-HT(1A) or 5-HT(1B) receptors on GABAergic interneurons is involved in paradoxical facilitation of hippocampal acetylcholine and striatal dopamine release, respectively. Such 5-HT heteroreceptors are considered potential targets for appropriate 5-HT receptor ligands which, by enhancing the release of a relevant neurotransmitter, can compensate for its hypothesized deficiency in distinct brain areas. Examples for such deficiencies are the impaired release of hippocampal or neocortical acetylcholine, striatal dopamine, and hippocampal or neocortical noradrenaline in disorders such as Alzheimer's disease, Parkinson's disease, and major depression, respectively.

Similar articles

See all similar articles

Cited by 113 PubMed Central articles

See all "Cited by" articles

Publication types

LinkOut - more resources

Feedback