Social interactions in myxobacterial swarming

PLoS Comput Biol. 2007 Dec;3(12):e253. doi: 10.1371/journal.pcbi.0030253. Epub 2007 Nov 13.

Abstract

Swarming, a collective motion of many thousands of cells, produces colonies that rapidly spread over surfaces. In this paper, we introduce a cell-based model to study how interactions between neighboring cells facilitate swarming. We chose to study Myxococcus xanthus, a species of myxobacteria, because it swarms rapidly and has well-defined cell-cell interactions mediated by type IV pili and by slime trails. The aim of this paper is to test whether the cell contact interactions, which are inherent in pili-based S motility and slime-based A motility, are sufficient to explain the observed expansion of wild-type swarms. The simulations yield a constant rate of swarm expansion, which has been observed experimentally. Also, the model is able to quantify the contributions of S motility and A motility to swarming. Some pathogenic bacteria spread over infected tissue by swarming. The model described here may shed some light on their colonization process.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Adhesion / physiology*
  • Cell Communication / physiology*
  • Chemotaxis / physiology*
  • Computer Simulation
  • Models, Biological*
  • Motion
  • Myxococcus / physiology*