Mapping the structural requirements in the CB1 cannabinoid receptor transmembrane helix II for signal transduction

J Pharmacol Exp Ther. 2008 Apr;325(1):341-8. doi: 10.1124/jpet.107.133256. Epub 2008 Jan 3.

Abstract

Amino acid residues in the transmembrane domains of the CB(1) receptor are important for ligand recognition and signal transduction. We used site-directed mutagenesis to identify the role of two novel and adjacent residues in the transmembrane helix II domain, Ile2.62 and Asp2.63. We investigated the role of the conserved, negatively charged aspartate at position 2.63 in cannabinoid receptor (CB(1)) function by substituting it with asparagine (D2.63N) and glutamate (D2.63E). In addition, the effect of the mutant I2.62T alone and in combination with D2.63N (double mutant) on the affinity and potency of structurally diverse ligands was investigated. Recombinant human CB(1) receptors, stably expressed in human embryonic kidney 293 cells, were assayed for ligand affinity and agonist-stimulated guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding. The charge-conserved mutant D2.63E behaved similar to wild type. The charge-neutralization mutation D2.63N attenuated the potency of (-)-3-[2-hydroxyl-4-(1,1-dimethylheptyl)phenyl]-4-[3-hydroxylpropyl] cyclohexan-1-ol (CP,55940), (R)-(-)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthalenyl)methanone (WIN55212-2), (-)-11beta-hydroxy-3-(1',1'-dimethylheptyl) hexahydrocannabinol (AM4056), and (-)-11-hydroxyldimethylheptyl-Delta(8)-tetrahydrocannabinol (HU210) for the stimulation of GTPgammaS binding, without affecting their binding affinities. Likewise, the I2.62T mutant selectively altered agonist potency without altering agonist affinity. It was surprising to note that the double mutant (I2.62T-D2.63N) displayed a drastic and synergistic increase (by approximately 50-fold) in the EC(50) for agonist-mediated activation. The profound loss of function in the I2.62T-D2.63N double mutant suggests that, although these residues are not obligatory for agonist recognition, they play a synergistic and crucial role in modulating signal transduction.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Substitution
  • Asparagine
  • Binding Sites / genetics
  • Conserved Sequence
  • Humans
  • Protein Binding / genetics
  • Protein Structure, Secondary
  • Receptor, Cannabinoid, CB1 / chemistry
  • Receptor, Cannabinoid, CB1 / genetics*
  • Receptor, Cannabinoid, CB1 / metabolism
  • Sequence Alignment
  • Signal Transduction / genetics*

Substances

  • Receptor, Cannabinoid, CB1
  • Asparagine